Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present near-infraredJHKphotometry for the resolved stellar populations in 13 nearby galaxies: NGC 6822, IC 1613, NGC 3109, Sextans B, Sextans A, NGC 300, NGC 55, NGC 7793, NGC 247, NGC 5253, Cen A, NGC 1313, and M83, acquired from the 6.5 m Baade–Magellan telescope. We measure distances to each galaxy using the J-region asymptotic giant branch (JAGB) method, a new standard candle that leverages the constant luminosities of color-selected, carbon-rich AGB stars. While only single-epoch, random-phase photometry is necessary to derive JAGB distances, our photometry is time-averaged over multiple epochs, thereby decreasing the contribution of the JAGB stars’ intrinsic variability to the measured dispersions in their observed luminosity functions. To cross-validate these distances, we also measure near-infrared tip of the red giant branch (TRGB) distances to these galaxies. The residuals obtained from subtracting the distance moduli from the two methods yield an rms scatter ofσJAGB−TRGB= ±0.07 mag. Therefore, all systematics in the JAGB method and TRGB method (e.g., crowding, differential reddening, star formation histories) must be contained within these ±0.07 mag bounds for this sample of galaxies because the JAGB and TRGB distance indicators are drawn from entirely distinct stellar populations and are thus affected by these systematics independently. Finally, the composite JAGB star luminosity function formed from this diverse sample of galaxies is well described by a Gaussian function with a modal value ofMJ= –6.20 ± 0.003 mag (stat), indicating that the underlying JAGB star luminosity function of a well-sampled full star formation history is highly symmetric and Gaussian based on over 6700 JAGB stars in the composite sample.more » « less
- 
            Abstract EX Lupi, a low-mass young stellar object, went into an accretion-driven outburst in 2022 March. The outburst caused a sudden phase change of ∼112° ± 5° in periodically oscillating multiband lightcurves. Our high-resolution spectra obtained with the High Resolution Spectrograph (HRS) on board the Southern African Large Telescope also revealed a consistent phase change in the periodically varying radial velocities (RVs), along with an increase in the RV amplitude of various emission lines. The phase change and increase in RV amplitude morphologically translates to a change in the azimuthal and latitudinal location of the accretion hotspot over the stellar surface, which indicates a reconfiguration of the accretion funnel geometry. Our three-dimensional magnetohydrodynamic simulations reproduce the phase change for EX Lupi. To explain the observations, we explored the possibility of forward shifting of the dipolar accretion funnel as well as the possibility of the emergence of a new accretion funnel. During the outburst, we also found evidence of the hotspot’s morphology extending azimuthally asymmetrically with a leading hot edge and cold tail along the stellar rotation. Further, our high-cadence photometry showed that the accretion flow has clumps. We also detected possible clumpy accretion events in the HRS spectra that showed episodically highly blueshifted wings in the CaiiIR triplet and Balmer H lines.more » « less
- 
            Abstract We confirm TOI-4201 b as a transiting Jovian-mass planet orbiting an early M dwarf discovered by the Transiting Exoplanet Survey Satellite. Using ground-based photometry and precise radial velocities from NEID and the Planet Finder Spectrograph, we measure a planet mass of MJ, making this one of the most massive planets transiting an M dwarf. The planet is ∼0.4% of the mass of its 0.63M⊙host and may have a heavy-element mass comparable to the total dust mass contained in a typical class II disk. TOI-4201 b stretches our understanding of core accretion during the protoplanetary phase and the disk mass budget, necessitating giant planet formation to take place either much earlier in the disk lifetime or perhaps through alternative mechanisms like gravitational instability.more » « less
- 
            Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.more » « less
- 
            Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius , mass , and density for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of for TOI-2015 b and for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.more » « less
- 
            Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.more » « less
- 
            Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 g cm−3) with a planetary radius of 9.7 ± 0.5R⊕(0.87 ± 0.04RJup) and a planetary mass of (0.42 ). It has an orbital period of days and an orbital eccentricity of . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R⊕). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.more » « less
- 
            Abstract We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A ( J = 11.93) is an M4 dwarf hosting a short-period (4.353326 ± 0.000005 days) gas giant ( M p = 0.14 ± 0.03 M J and R p = 0.71 ± 0.02 R J ) with a wide-separation white dwarf companion. TOI-5293 A ( J = 12.47) is an M3 dwarf hosting a short-period (2.930289 ± 0.000004 days) gas giant ( M p = 0.54 ± 0.07 M J and R p = 1.06 ± 0.04 R J ) with a wide-separation M dwarf companion. We characterize both systems using a combination of ground- and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b ( T eq = 563 ± 15 K and TSM = 138 − 27 + 29 ) and TOI-5293 A b ( T eq = 675 − 30 + 42 K and TSM = 92 ± 14) are two of the coolest gas giants among the population of hot Jupiter–sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and 3D obliquity measurements to probe system architecture and migration scenarios.more » « less
- 
            Abstract Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R⊕, a mass of M⊕, and a density of g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R⊕<Rp< 7R⊕) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.more » « less
- 
            Abstract The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M☉(83.81 ± 2.10MJ), a radius of (1.0841 ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M☉). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
